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Abstract—Today’s growth in the volume of wireless devices
coupled with the demand for data-intensive use cases has mo-
tivated the deployment of millimeter-wave (mmWave) small-cell
networks. Although it is true that mmWave networks can carry
a large volume of traffic, highly intermittent connectivity and the
challenges related to installing many small-cell base stations (BSs)
in urban geometry have impeded its progression into practical
networks. To cope with these challenges, we present, in this paper,
an approach to the mmWave BS deployment (site planning)
problem, based on the minimum-deployment-cost criterion that
is subject to user equipment (UE) outage constraints. Unlike the
prior works, the proposed model captures the randomness of
link blockage and signal-to-interference-plus-noise-ratio (SINR)
statistics in mmWave networks. We formulate the minimum-cost
deployment problem as large-scale integer nonlinear program-
ming (INP). To deal with the combinatorial and coupled nature
of the problem, the large-scale INP has approached to devise a
suboptimal but efficient algorithm by decomposing it into two
subproblems: (i) cell coverage optimization and (ii) minimum
subset selection. We provide the solutions to each subproblem as
well as theoretical justifications of them. Simulation results that
illustrate UE outage guarantees of the proposed BS deployment
method are presented. The results reveal that the proposed
method uniquely distributes the macro-diversity orders that are
distinct from other benchmarks.

Index Terms—Link blockage, outage, minimum-cost base sta-
tion deployment, integer nonlinear programming, integer linear
programming, site planning.

I. INTRODUCTION

Communications in the millimeter-wave (mmWave)
bands will play an important role in facilitating the data-
intensive fifth-generation (5G) use cases, including real-time
machine-type communications, interactive on-line learning,
and enhanced augmented reality (EAR). The potential of the
mmWave band has made it as one of the important components
of future cellular networks [1]–[3]. While it is true that
mmWave communications provide very high rate connectivity,
contrary to general belief, this does not necessarily translate
to high achievable throughput due to significant differences
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between systems operating in mmWave and legacy sub-6GHz
bands.

The initial channel access in the mmWave cellular environ-
ment is a very critical task, especially, using directional pencil
beams [1], [4], [5]. Particularly, weak diffraction and high
attenuation of mmWave propagation make channels vulnerable
to physical blockage; materials such as brick can attenuate
mmWave signals by as much as 40 to 80 dB [6], and the
human body can result in a 20 to 35 dB loss [7]. It is
evident that under physical blockage the user equipment (UE)
cannot access a BS. Even without physical blockage, a UE
can still be in blockage due to UE access-limited blockage.
This is because the number of radio frequency (RF) chains
remains limited at the mmWave hybrid massive multiple-input
multiple-output (MIMO) BSs, which constrains the number
of UEs that can be served concurrently [8]–[13]. Therefore,
when the number of active UEs on a time-frequency resource
block (RB) is larger than the number of RF chains, UE access-
limited blockage occurs. Moreover, accumulated interference
from many surrounding BSs can potentially lower the signal-
to-interference-plus-noise ratio (SINR) of each UE, causing
SINR outage [14]. Both blockages and SINR outage will lead
to highly intermittent mmWave connectivity.

Previously, the physical blockage has been approached from
a macro-diversity point of view [15]–[17]. Macro diversity
allows for each UE to be covered by multiple BSs so that
whenever a link from a BS is blocked, the link can be restored
by another BS that also covers the UE. However, this benefit
comes at the price of increasing the number of deployed BSs.
The recent growth in the cost of deploying and maintaining
large numbers of small-cell BSs is a practical concern that
wireless operators are constantly facing [18].

A. Related Work
A pragmatic strategy for BS deployment is to minimize the

number of deployed BSs subject to per-UE quality-of-service
(QoS) constraints. In this category, BS density optimization
[19]–[24] and site-specific BS deployment [25]–[28] methods
have been studied. The BS density optimization methods [19]–
[24] focus on stochastic geometry to find minimum BS density
subject to cell coverage constraints. On the other hand, the site-
specific BS deployment methods [25]–[28] find the minimum
number of BSs installed on predetermined candidate locations
to guarantee UE QoS. The underlying assumption of these
works [19]–[28] was omnidirectional and penetrable wave
propagation in the sub-6GHz bands, which cannot be extended
to mmWave.
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Accounting for mmWave pathloss models, site-specific BS
deployment techniques have been studied to maximize line-of-
sight (LoS) link distance [29]–[32] and macro diversity orders
[33]. While a generic urban geometry was assumed in [29]–
[32], BS deployment on a specific Manhattan-type geometry
was the focus of [33]. Recently, the site-specific mmWave
BS deployment methods that find the minimum number of
BSs to ensure the average receive signal power [34], beam
alignment reliability [35], and resilience to blockages [36]
were studied. Existing mmWave BS deployment algorithms,
however, do not account for the randomness of blockages
and SINR deviation, caused by the use of directional pencil
beams, and fail to provide UE outage guarantees. Given
highly intermittent mmWave connectivity, ensuring the UE
outage performance is more appropriate than, for example,
ensuring the average receive signal power. Thus, a major
issue that remains to be addressed is to find an efficient BS
deployment algorithm that is cost-optimal and provides UE
outage guarantees.

To address the later issues, we formulate, in this paper, the
minimum-cost BS deployment problem as large-scale integer
nonlinear programming (INP). This aspect has some similari-
ties to the well-investigated problems on optimizing BS sleep-
ing and user association at sub-6GHz bands. These problems
were often dealt by formulating INP with the objectives of
maximizing network throughput [37], [38] or minimizing the
power consumption [26]–[28], [39], [40]. Because large-scale
INP is NP-hard and is generally impossible to be optimally
solved, devising suboptimal but efficient algorithms was the
focus of these approaches, for example, by using greedy
heuristics [26]–[28], Lagrangian dual [38], [40], and sequential
subproblem formulations [37], [39]. Though these suboptimal
treatments were largely benefited from the deterministic link
models at sub-6GHz bands, such models and associated prob-
lem formulations cannot be extended to the mmWave bands.
Although prior approaches [26]–[28], [37]–[40] dealt with
INP, they are different from our proposed approach in terms
of the objective functions, size of the problem, associated
constraints, and thereby, the developed algorithms.

B. Overview of Methodology and Contributions
We present an approach to the problem of mmWave BS

deployment, based on the minimum-cost BS deployment cri-
terion that is subject to UE outage constraints taking into
account both physical and UE access-limited blockages as well
as SINR outage. Our main methodologies and contributions
are summarized below.
• We introduce a model for the elementary events of

mmWave link outage, which captures the randomness
of physical blockage, UE access-limited blockage, and
SINR outage. The developed model also accounts for
directional beam patterns at each BS, as well as random
locations of obstacles and UEs. These models facilitate
the mathematical formulation of the UE outage constraint.

• We formulate, in this paper, the UE-outage-guaranteed
minimum-cost mmWave BS deployment problem as a
large-scale INP. The nonlinearity and combinatorial na-
ture of the problem motivate the pursuit of a suboptimal

but efficient solution. Moreover, intricate interdependency
between the random blockage and outage events makes
the UE outage constraint difficult to be incorporated in
developing an optimization algorithm. To cope with the
difficulties, we conduct a bound analysis and show that
the UE outage constraint can be approximated as a set of
analyzable constraints. By doing so, we tractably handle
the large-scale INP.

• We show that the formulated, large-scale INP can be
decomposed into two separable subproblems: (i) cell cov-
erage optimization problem and (ii) minimum subset BS
selection problem. Since the decomposition is separable,
sequentially solving these two subproblems is sufficient.
We provide the optimal solutions and theoretical justifi-
cations of them. In particular, we show that the second
subproblem (minimum subset BS selection problem),
which is also large-scale INP, can be transformed into
equivalent integer linear programming (ILP) that can be
efficiently solved via an existing solver.

• Finally, we evaluate the efficacy of our proposed designs
through numerical simulations. It is demonstrated that the
proposed scheme provides UE outage guarantees with
the minimum-cost deployment, which is not the case
of other benchmark schemes [34], [35]. An interesting
aspect of the proposed scheme is that the results present a
unique distribution of the macro-diversity orders over the
network in a way to lower the concentration of macro-
diversity orders compared to other benchmark schemes
in [34], [35], which is the underlying reason for the
improved UE outage guarantee of the proposed scheme.

The rest of the paper is organized as follows. We present the
system model in Section II. UE outage analysis is conducted
in Section III. The UE outage-guaranteed minimum-cost
mmWave BS deployment problem is discussed in Section IV.
Section V presents the proposed algorithms. The simulation
results and conclusions are provided in Sections VI and VII,
respectively. For ease of reference, TABLE I summarizes the
main variables which will be used throughout this paper.

II. SYSTEM MODELS

We describe an assumed 3D urban geometry, mmWave
channel model, and cellular environment under consideration.

A. Urban Geometry
We consider a 3D urban geometry, for example, in Fig. 1,

which consists of buildings and streets. The mmWave BSs
are mounted on the walls of buildings. We assume that
the candidate BS locations are predetermined as red dots
in Fig. 1, where the indices of the candidate locations are
denoted by B = {1, 2, . . . , B}. Each candidate location has
the height HBS,b,∀b ∈ B. If a BS is installed at the bth
(b ∈ B) location, yb = 1 and otherwise, yb = 0, where
yb ∈ B = {0, 1} is the bth entry of the BS deployment vector
y = [y1, . . . , yB ] ∈ B1×B . Hereafter, a BS installed at the bth
candidate location is referred to as “BS b”.

Each mmWave BS has its coverage area, called a cell, and
serves outdoor active UEs inside the cell in the downlink. Due



3

TABLE I: List of Main Variables and Their Physical Meanings

Variable Description
Gmain Mainlobe beam gain
Gside Sidelobe beam gain
HBS,b Height of BS b
HUE Height of UEs
Ib,g Interference power from BS b to UE g
Lgrd Length of square grid
nb (xb) Number of active UEs without physical blockage in cell b
NRF Number of RF chains at each BS
Pb,g Transmit power of link from BS b to UE g

pblk
b,g Physical blockage probability of link from BS b to UE g

ρb,g(xb) UE access-limited blockage probability from BS b to UE g
pout
b,g Outage probability of the link from BS b to UE g

PLb,g Pathloss of the link from BS b to grid g
PTx Total transmit power of a BS
Rmax Maximum link distance for reliable communication
rb,g Distance of the link from BS b to grid g
rmax
b Maximum-link distace in cell b

SINRb,g SINR of the link from BS b to UE g

X∈BB×G Association matrix
xb∈B1×G The bth row of X
y∈B1×B BS deployment vector
z SINR threshold
λUE,g UE density in grid g
ζg UE outage tolerance for grid g
γ UE access-limited blockage tolerance
σ2 Noise power

to the physical blockage, the shape of a cell is irregular. To
capture the irregularity, the whole outdoor area is divided into
G square grids as shown in Fig. 1. We denote the index set
of the grids as G = {1, 2, . . . , G}. An association indicator
xb,g ∈ B is introduced, where xb,g = 1 if the grid g ∈ G
resides in the cell of BS b, and xb,g = 0, otherwise. The cell
area of BS b is then given by

∑
g xb,gL

2
grd, where Lgrd is the

side length of a square grid in Fig. 1. Overlap between cells
is allowed so that some UEs in a cell can be simultaneously
covered by more than one BS,∑

b∈B

xb,g ≥ 1, (1)

implying that the macro diversity order is larger than or equal
to 1. For notational simplicity, all association indicators {xb,g}
are collected into an association matrix X ∈ BB×G, where its
bth row and gth column entry is xb,g .

B. Pathloss Model
Weak diffraction and penetration in the mmWave frequen-

cies make the non-LoS (NLoS) paths suffer from much higher
attenuation than the LoS path. As a result, the connectivity of
a mmWave link is largely dependent on the LoS path [41].
Hence, in this work, we will focus on the LoS paths for
mmWave BS deployment.

In the recent 3GPP 5G specifications (Release 15 [42]),
the 28 GHz mmWave band has been allocated as one of
the standard bands. Throughout the paper, we will use the
LoS pathloss model based on the measurement campaign
conducted in an urban area at 28 GHz [4]:

PLb,g = 10−3.24−2.1·log10(rb,g)−2.0·log10(28), (2)

where PLb,g is the pathloss from BS b to a UE g, and rb,g

Building

Candidate BS 

location

Outdoor area 
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into square 

grids

Outdoor area

Lgrd

Street boundary

Fig. 1: Bird’s-eye view of an exemplary urban street geometry
for mmWave BS deployment.

is the link distance in meters. Herein, the link distance rb,g
is limited by a constant Rmax (rb,g ≤ Rmax), where Rmax is
the maximum allowable mmWave link distance for reliable
communications.1 As such, we assume any link with rb,g >
Rmax is in outage.

C. Hybrid Array and Beam Pattern
1) Hybrid Analog-Digital Arrays
In the mmWave cellular systems, large-sized antenna arrays

are used to generate highly directional narrow beams in order
to overcome severe pathloss [1]. Due to power consumption
and complexity, analog arrays are typically driven by a limited
number of RF chains (NRF). This system is commonly referred
to as a hybrid analog-digital mmWave MIMO system [8]–[13],
which is the major realization technology for 5G mmWave BS
systems. Throughout the paper, we assume that the BSs are
equipped with the hybrid mmWave MIMO systems.

2) Beam Pattern
We assume a simplified directional beam pattern at BSs,

also known as the cone-shaped beam pattern, as follows

GBS(θ, φ)=

{
Gmain, if |θ| ≤ ∆θ

2
, |φ| ≤ ∆φ

2
Gside, otherwise

, (3)

where Gmain and Gside are the array gains at the mainlode and
sidelobe, respectively. Then, GBS(θ, φ) represents the beam
gain at elevation θ and azimuth φ directions. The ∆θ and ∆φ

in (3) are, respectively, the beamwidths at the elevation θ and
azimuth φ. Although model (3) is an approximation, it can be
shown that (3) closely approach to the actual beam pattern as
the array size increases [14], [44], [45]. The BS aligns its beam
toward a serving UE to produce beamforming gain Gmain. In
this work, we assume a single antenna UE that generates an
omnidirectional receive beam.

D. UE Distribution
We assume that UEs have the same height HUE and

HUE<HBS,b,∀b ∈ B. To model the UE distribution, we adopt

1For example as shown in [43], a 200 meter LoS link at the range
of 28GHz frequencies was measured to be extremely unstable for reliable
communication, thereby Rmax = 200.
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Fig. 2: Logical relationship of the elementary events for link
outage.

the non-homogeneous Poisson point process (PPP) [46], [47].
Specifically, given that the partitioned square grids in Fig. 1 are
small enough, we treat the users in each grid g to be uniformly
distributed with a density λUE,g , g∈G per resource block (RB).
A different grid can have different per-RB UE density λUE,g .
This approximation becomes exact as the square grid reduces
to a point, i.e., grid length Lgrd → 0.

As aforementioned, the number of simultaneously served
UEs on an RB of a hybrid mmWave MIMO system is limited
by the number of RF chains NRF. A resource-division multiple
access technique can be employed to schedule multiple RBs
simultaneously by allocating orthogonal resources, such as
time, frequency, and coding blocks (or a combinations of
them). Depending on a specific multiple access scheme used,
the total number of UEs that can be served on the multiplexed
RBs becomes µNRF, where µ > 1 is an RB multiplexing
factor. Since µ is implementation-specific, without loss of
generality, we focus on, in our paper, a RB. Thus, we develop
a BS deployment scheme to guarantee UE access given per-RB
UE density λUE,g,∀g ∈ G.2

III. UE OUTAGE ANALYSIS

In this section, we analyze the statistics of the physical
blockage in Section III-A, UE access-limited blockage in
Section III-B, and SINR outage in Section III-C. Finally, we
formulate in Section III-D the UE outage constraint based on
the sequential relationship among the elementary events (i.e.,
physical blockage, UE access-limited blockage, and SINR
outage) as shown in Fig. 2.

A. Physical Blockage Probability
3D ray tracing is adopted to first extract the LoS path from

each BS b to each grid g [48]. Physical blockage of the links

2This means whenever a specific multiple access technique with the multi-
plexing factor µ is used, the total number of UEs served on the multiplexed
RBs is up to a constant scaling factor µ.

depends on not only the distance of a link (rb,g ≤ Rmax) but
also the density and sizes of random obstacles. We assume
that the random obstacles on streets are impenetrable cubes.
The placement of each obstacle follows a homogeneous PPP
with the density λobs [5]. The physical blockage probability
of the link between BS b and grid g is then given by

pblk
b,g=

{
1−exp(−βrb,g−α) , if ∃ LoS path
1 , otherwise , (4)

where α and β are parameters that depend on the density and
sizes of the random obstacles [5]. The variables in (4) follow
β=2λobs

E[Lobs]+E[Wobs]
π η and α = λobsE[Lobs]E[Wobs], where

E[Lobs] and E[Wobs] are the expected length and width of ob-
stacles, respectively, and η = 1−

∫ 1

0

∫ sHUE+(1−s)HBS

0
fh(x)dxds

where fh(x) is the probability density function of the height
of an obstacle. The expression in (4) clearly reveals that as the
obstacle density λobs and the obstacle sizes grow, the α and β
in (4) increase, resulting in a higher blockage probability.

B. UE Access-Limited Blockage Probability

When the mmWave link between a UE and BS is not
physically blocked, the UE can attempt channel access to
the BS as illustrated in Fig. 2. However, it can still be in
blockage because the maximum number of UEs that a BS can
simultaneously serve on an RB is limited by NRF, causing UE
access-limited blockage. In this subsection, we identify the
UE access-limited blockage probability ρb,g(xb) between BS
b and a UE in grid g, where xb = [xb,1, . . . , xb,G] ∈ B1×B is
the bth row of the association matrix X.

We let nb (xb) be the number of active UEs without physical
blockage in the cell area

∑
gxb,gL

2
grd of BS b. Then, the

UE access-limited blockage occurs when nb (xb) > NRF.
Assuming the equal probability of being successful in channel
access of the nb (xb) UEs, given nb (xb) > NRF, the UE g is in
UE access-limited blockage with the probability nb(xb)−NRF

nb(xb)
.

Marginalizing over the events {nb (xb) > NRF}, the UE
access-limited blockage probability ρb,g(xb) between BS b and
a UE in grid g is therefore

ρb,g(xb) =
∑

i: i>NRF

Pr(nb (xb) = i)
i−NRF

i
. (5)

To identify Pr(nb (xb) = i) in (5), we first need to derive
the distribution of nb(xb). From the independent thinning
property of PPP [49], the number of active UEs per grid
g, without physical blockage, is Poisson-distributed with the
mean λUE,gL

2
grd(1 − pblk

b,g). Because the sum of independent
Poisson random variables is still Poisson, nb(xb) is Poission-
distributed with the mean

E[nb(xb)] =
∑
g∈G

xb,gλUE,gL
2
grd(1− pblk

b,g). (6)

The closed-form expression of (5) is then given by

ρb,g(xb)=

+∞∑
i=NRF+1

E[nb(xb)]
i

i!
e−E[nb(xb)]

i−NRF

i
. (7)

Remark 1. The UE access-limitd blockage ρb,g(xb) in (7)
has interdependence between the UE density λUE,g and the
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cell coverage
∑
g xb,gL

2
grd of a BS. Intuitively, if a BS covers

a larger number of grids, there are more UEs in the cell
requesting channel access, resulting in a higher probability
of UE access-limited blockage. The same is true when the
UE density λUE,g per-RB grows. Later, we demonstrate this
intuition.

C. SINR Outage Probability

As seen in Fig. 2, a UE acquires initial access to BS
when it does not experience both physical and UE access-
limited blockages. However, even without physical and UE
access-limited blockages, accumulated interference from sur-
rounding BSs can cause SINR outage. Denoting the SINR
of the link from BS b to a UE g given y and X as
SINRb,g(y,X), we denote the SINR outage probability as
Pr
(
SINRb,g(y,X)<z|y,X

)
, where z is the SINR threshold

for reliable communications. Directly analyzing the SINR
outage {SINRb,g(y,X) < z} in the mmWave network is a
very difficult task if not impossible to determine. Instead, we
resort to a deterministic approach to find a lower bound of
SINRb,g in order to obtain an upper bound of the SINR outage
probability Pr

(
SINRb,g(y,X) < z|y,X

)
.

We assume an equal power allocation per UE and write the
desired signal power Pb,g(xb) received at an active UE in grid
g from its serving BS b as

Pb,g(xb) =
xb,gPTX

min(nb(xb), NRF)
GmainPLb,g

≥ xb,gPTX

NRF
GmainPLb,g , P b,g(xb,g), (8)

where PTX is the total transmit power of a BS,
min(nb(xb), NRF) is the number of served UEs by BS b, Gmain
follows (3), and PLb,g is in (2). The last inequality in (8) is
due to min(nb(xb), NRF) ≤ NRF.

We now capture the composite link interference power
under the assumption that the mainlobe of a 3D beam in (3) is
perfectly aligned with the intended UE and is narrow enough
not to cause interference to other UEs. Thus, it is the sidelobe
of the beam that causes interference with probability 1. A BS
i serving min(ni(xi), NRF) UEs produces min(ni(xi), NRF)
spatial beams and can impose interference Ii,g(xb) to a UE in
grid g with min(ni(xi), NRF)−xi,g interfering sidelobes. Note
that when pblk

i,g < 1 in (4), the interference power Ii,g(xb) is a
Bernoulli random variable with its value either 0 (blocked) or
positive (unblocked). Denoting Ai,g as the event that the LoS
path between the BS i and UE g is not physically blocked
yields

Ii,g(xb)=I{Ai,g}

(
min(ni(xi), NRF)−xi,g

)
PTX

min(ni(xi), NRF)
GsidePLi,g

≤
(

1− xi,g
NRF

)
PTXGsidePLi,g, Îi,g(xi,g), (9)

where I{Ai,g} is an indicator function: I{Ai,g} = 1 if the
event Ai,g is true, and I{Ai,g} = 0 otherwise. The last
inequality in (9) is due to the facts that I{Ai,g} ≤ 1 and
min(ni(xi), NRF) ≤ NRF. When I{Ai,g} = 1 and ni(xi) ≥
NRF, the equality holds in (9). This means the bound becomes

tight when the physical blockage probability in (4) is relatively
low.

Applying the deterministic approach to find the bounds in
(8) and (9), the SINRb,g is readily lower bounded by

SINRb,g(y,X) ≥ SINRb,g(y,X),
P b,g(xb,g)

σ2 +
∑
i∈B

yiÎi,g(xi,g)
, (10)

where σ2 is the additive noise power. Thus, the conditional
probability of SINRb,g(y,X) < z given y and X is

Pr
(

SINRb,g(y,X)<z|y,X
)

= I{
SINRb,g(y,X)<z|y,X

}, (11)

which is an upper bound of Pr
(
SINRb,g(y,X)<z|y,X

)
.

Remark 2. The lower bound in (10) is obtained based on
the lower bound of the desired signal power in (8) and
the upper bound of the interference power in (9). Note that
the bound in (8) becomes tight when nb(xb) ≈ NRF; it
indeed becomes the equality when nb(xb) = NRF. Similarly,
the bound in (9) becomes tight when nb(xb) ≈ NRF as
well as when pblk

b,g in (4) is small. Because the accumulated
interference

∑
i∈B yiÎi,g(xi,g) in (10) is dominated by nearby

BSs, these links have low physical blockage probabilities (due
to a shorter distance than other links) and thus, a higher
chance for the event Ai,g in (9).

D. UE Outage Constraint
We first identify the UE outage probability for a single

link. This model is then extended to the case when there are
multiple associated BSs to identify the UE outage constraint

1) Single-Link UE Outage Probability
A link from BS b to a UE g is in outage if one of the

following mutually exclusive events occurs as described in the
previous subsections: (i) Event Pb,g: the channel is physically
blocked; (ii) Event Ub,g: the channel is physically unblocked,
but the UE access-limited blockage occurs; and (iii) Event
Sb,g: the channel has no blockage and the UE acquires initial
access to BS (i.e., SINRb,g > 0), but the SINR outage occurs.
Because the three events are mutually exclusive as illustrated
in Fig. 2, the outage probability of the single-link is given by

pOut
b,g = Pr(Pb,g) + Pr(Ub,g) + Pr(Sb,g). (12)

Substituting the physical blockage probability pblk
b,g in (4), UE

access-limited blockage ρb,g(xb) in (7), and SINR outage
upper bound Pr

(
SINRb,g(y,X)<z|y,X

)
in (11) into (12),

an upper bound of the single-link outage probability pOut
b,g is

given by

pOut
b,g≤pblk

b,g+
(

1−pblk
b,g

)
ρb,g(xb)+

(
1−ρb,g(xb)

)
p̂SINR
b,g (y,X),

(13)
where

p̂SINR
b,g (y,X) ,

(
1−pblk

b,g

)
Pr
(

SINRb,g(y,X)<z|y,X
)

(14)

for ease of exposition.
2) UE Outage Constraint
Since a UE g can be covered by multiple BSs (i.e., (1)),

the UE outage occurs when all these links are in the outage
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simultaneously. Assuming independent outage per link, the UE
outage constraint is expressed as
B∏
b=1

[
pOut
b,g

]xb,g
≤

B∏
b=1

[
pblk
b,g + ρb,g(xb)

(
1−pblk

b,g

)
+
(
1−ρb,g(xb)

)
p̂SINR
b,g (y,X)

]xb,g
≤ζg,(15)

where the inequality follows from (13), and ζg∈(0, 1] is a UE
outage tolerance for gird g. It is clear any (y,X) guaranteeing
(15) ensures

∏B
b=1

[
pOut
b,g

]xb,g ≤ ζg . Taking the logarithm on
both sides of (15) yields∑
b∈B

xb,glog
(
pblk
b,g + ρb,g(xb)

(
1− pblk

b,g

)
+
(
1−ρb,g(xb)

)
p̂SINR
b,g (y,X)

)
≤ log

(
ζg
)
.(16)

Remark 3. The UE outage tolerance level ζg in (16) can be
determined practically during the BS deployment planning.
The implication of imposing (16) is that the obtained BS
deployment will guarantee successful channel access with a
probability larger than 1 − ζg . In urban environments with
dense UE distribution, the ζg value can be enforced to be
small for reliable channel access, while relatively large ζg
values can be set in rural scenarios. When a grid has no UE,
we can set ζg = 1 parsimoniously, implying that this grid does
not need to be covered by any BSs.

IV. MINIMUM-COST BS DEPLOYMENT PROBLEM
FORMULATION

The expressions of ρb,g(xb) in (7) and Pr
(
SINRb,g(y,X)<

z|y,X
)

in (11) are not fully analyzable, and it is difficult to
formulate a solvable optimization problem for our purpose of
BS deployment optimization. We thus propose an approxima-
tion to replace the (16) with two constraints in Section IV-A.
Combined with the BS association constraints presented in
Section IV-B, we formulate the minimum-cost mmWave BS
deployment problem in Section IV-C.

A. UE Outage Constraint Approximation

About the monotonicity of (16) with respect to the blockage
probability ρb,g(xb), we have the following lemma.

Lemma 1. The logarithmic function in (16)

log
(
pblk
b,g + ρb,g(xb)

(
1− pblk

b,g

)
+
(
1−ρb,g(xb)

)
p̂SINR
b,g (y,X)

)
is a monotonically increasing function of the UE access-
limited blockage probability ρb,g(xb) in (7)

Proof. See Appendix A.

We introduce a tolerance level γ ∈ [0, 1] to limit the value
of ρb,g(xb) in (16) as

ρb,g(xb)=

+∞∑
i=NRF+1

E[nb(xb)]
i

i!
e−E[nb(xb)]

i−NRF

i
≤ γ. (17)

Replacing the ρb,g(xb) in (16) with γ yields∑
b∈B

xb,glog
(
pblk
b,g + γ

(
1− pblk

b,g

)
+ (1−γ) p̂SINR

b,g (y,X)
)
≤ log

(
ζg
)
. (18)

Because of Lemma 1 and (17), the left-hand-side of (18) is
an upper bound of that in (16) and any (y,X) guaranteeing
(18) ensures (16). The (16) can now be approximated by the
two constraints (17) and (18).

However, the condition in (17) is still complicate to be
directly analyzed as a constraint of an optimization problem.
Instead, we find an equivalent, but tractable condition of (17)
below.

Lemma 2. For Φ ≥ 0 satisfying
∑+∞
i=NRF+1

Φi

i! e
−Φ i−NRF

i =
γ, the inequality in (17) is equivalent to the following linear
constraint

E[nb(xb)]=
∑
g∈G

xb,gλUE,gL
2
grd(1− pblk

b,g) ≤ Φ. (19)

Proof. See Appendix B.

In Section IV-C, we will take in the two inequalities in
(19) and (18) as the UE outage constraint to formulate the BS
deployment optimization problem.

B. BS Association Constraints

In this subsection, we list the rules for the elements in the
association matrix X. If a BS is installed at the bth candidate
location (yb=1), the association variable is either xb,g = 1 or
xb,g = 0, while if yb=0, then xb,g=0, yielding

xb,g ≤ yb, b ∈ B, g ∈ G. (20)

Based on the physical blockage model in Section III-A, it is
evident that necessary conditions for xb,g = 1 are: (i) the link
distance rb,g ≤ Rmax and (ii) the physical blockage probability
pblk
b,g < 1 in (4), which leads to

xb,g ≤ I{
rb,g≤Rmax, pblk

b,g<1
}, b ∈ B, g ∈ G. (21)

Further we assume that the grids closer to a BS have the
priority to be associated with the BS. This is to say, whenever
a grid g is served by BS b (xb,g = 1), other grid s ∈ G with
rb,s ≤ rb,g and pblk

b,s < 1 should also be served by the BS b,
leading to

I{
rb,s≤rb,g, pblk

b,s<1
}xb,g ≤ xb,s, b ∈ B, g, s ∈ G. (22)

C. Minimum-Cost BS Deployment Problem

Incorporating the BS association constraints in (20)-(22) and
UE outage constraints (18), (19) into the minimum-cost BS
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deployment criterion gives

min
y,X

B∑
b=1

cbyb (23a)

subject to xb,g ≤ yb, (23b)
xb,g ≤ I{

rb,g≤Rmax, pblk
b,g<1

}
,

(23c)

I{
rb,s≤rb,g, pblk

b,s<1
}xb,g ≤ xb,s, (23d)

E[nb(xb)] ≤ Φ, (23e)∑
b∈B

xb,glog
(
pblk
b,g+γ

(
1− pblk

b,g

)
+ (1−γ) p̂ SINR

b,g (y,X)
)
≤ log

(
ζg
)
, (23f)

yb∈{0, 1}, xb,g∈{0, 1}, ∀b ∈ B, g ∈ G,

where cb in (23a) is the BS installation cost at location
b ∈ B. The objective in (23a) is to minimize the cost for
deploying BSs by jointly optimizing the BS deployment vector
y ∈ B1×B and association matrix X ∈ BB×G. Because
of the nonlinear constraint (23f) with respect to the binary
vector y and matrix X, the problem in (23) is INP, which
is excessively complex to be directly solvable [50]. More
specifically, directly searching for the optimal solution needs
to evaluate all 2B×(G+1) combinations of (y,X), which is
prohibitive for relatively large B and G (e.g., B ≥ 100 and
G ≥ 100). In the next subsection, we address this challenge
and propose a low-complexity approach to optimally solve the
problem (23).

V. MINIMUM-COST BS DEPLOYMENT ALGORITHM

In this section, we find an optimal solution to the problem in
(23). The key to optimally solving (23) lies in decomposing it
into two separable subproblems: (i) cell coverage optimization
problem, which finds a feasible association matrix X for the
constraints in (23b)-(23f) as a function of the BS deployment
vector y, and (ii) minimum-cost subset BS selection problem,
which finds the minimum-cost y to guarantee the UE outage
constraint in (23f). The main motivation of this approach is
that the objective

∑B
b=1 cbyb in (23) is independent of X, and

thus, any feasible X (i.e., satisfying (23b)-(23f)) is optimal
to the problem. The cell coverage optimization subproblem is
first discussed below.

A. Cell Coverage Optimization
As a starting point, we introduce the following proposition

showing a monotonic relationship between the macro diversity
order in (1) and the left-hand-side of (23f).

Lemma 3. For a fixed BS deployment vector y, the left-hand-
side of (23f) is a monotonically decreasing function of the
macro diversity order

∑
b∈B xb,g in (1).

Proof. See Appendix C.

This lemma reveals that for a fixed y the left-hand-side of
(23f) is minimized by maximizing the macro diversity order∑
b xb,g of each grid. Hence, a feasible association matrix

X satisfying (23b)-(23f) for a given y, can be obtained by

maximizing the macro diversity order
∑
b xb,g subject to the

constraints in (23b)-(23e). To express the feasible X as a
function of y, we introduce an auxiliary variable Λb,g ∈ B,
referred to here as a coverage indicator, associated with the
candidate location b∈B and the grid g∈G, such that

xb,g = ybΛb,g, (24)

where Λb,g = 1 if a candidate BS location b ∈ B (regardless
whether yb = 1 or yb = 0) covers the grid g, and Λb,g = 0
otherwise. The objective of maximizing the macro diversity
order of all grids for a given y can be transformed to the
objective of maximizing the cell coverage of each candidate
location b as follows,

max
X

G∑
g=1

B∑
b=1

xb,g= max
X

B∑
b=1

G∑
g=1

xb,g=

B∑
b=1

yb max
Λb

G∑
g=1

Λb,g, (25)

where the first equality follows from the fact that changing
the order of summations does not alter the optimality, and the
second equality is due to xb,g = ybΛb,g and the fact that y is
fixed, where

∑G
g=1 Λb,g is the cell coverage of the candidate

location b and Λb = [Λb,1, . . . ,Λb,G] ∈ B1×G. Motivated by
(25), we find the maximum cell coverage of each candidate
location b based on the BS coverage (23b)-(23d) and UE
access-limited blockage (23e) constraints, leading to the cell
coverage optimization problem:

max
Λb

G∑
g=1

Λb,g, ∀b ∈ B (26a)

subject to Λb,g ≤ I{rb,g≤Rmax,pblk
b,g<1}, (26b)

I{
rb,s≤rb,g, pblk

b,s<1
}Λb,g ≤ Λb,s, (26c)

E[nb(Λb)] ≤ Φ, (26d)
Λb,g∈{0, 1}, ∀ g ∈ G,

where

E[nb(Λb)]=
∑
g∈G

Λb,gλUE,gL
2
grd(1− pblk

b,g). (27)

The association constraint (23b) is omitted because the con-
struction in (24) already implies (23b). We note that all
constraints in (26) are consistent with those in (23) except
for that it excludes the UE outage constraint in (23f) and
xb,g is changed to Λb,g . Without loss of optimality, we
relegate E[nb(xb)] ≤ Φ in (23e) to E[nb(Λb)] ≤ Φ because
E[nb(Λb)] ≤ Φ implies E[nb(xb)] ≤ Φ.

Since the coverage maximization at each candidate location
is separable and the grids closer to a candidate location have
the priority to be associated with the BS due to (26c), pursuing
maxΛb

∑G
g=1 Λb,g , ∀b ∈ B in (26) is equivalent to finding the

maximum-link distance rmax
b , ∀b ∈ B:

rmax
b = max

Λb
Λb,grb,g (28)

subject to: (26b), (26c), (26d), rb,g ≤ Rmax, ∀ g ∈ G.

Accounting for the constraints in (26b) and (26c), it is clear
that as the BS b covers more grids (i.e.,

∑G
g=1 Λb,g increases)

the objective in (28) increases. From (27) it is also clear that
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E[nb(Λb)] in (26d) is a monotonically increasing function of∑G
g=1 Λb,g . Hence the rmax

b in (28) is attained either when (i)
E[nb(Λb)] = Φ and rmax

b < Rmax or (ii) E[nb(Λb)]≤Φ and
rmax
b =Rmax.

Based on the above observations, optimal rmax
b in (28)

can be efficiently searched via iterative feasibility testing.
Specifically, a bisection method for solving (28) is presented in
Algorithm 1. At each iteration with a given rmax

b , Algorithm 1
exploits the facts that the constraints (26b) and (26c) determine
which grids are associated with the candidate location b, while
the UE access-limited constraint (26d) and Rmax examine the
feasibility of the rmax

b . The Step 5 of Algorithm 1 identifies
the indicator Λb,g such that Λb,g = 1 if rb,g ≤ rmax

b and
pblk
b,g < 1, and Λb,g = 0 otherwise, ∀b ∈ B, ∀g ∈ G. It

also exploits the constraint (26c); provided Λb,g = 1, for
other grid s ∈ G we have Λb,s = 1 if rb,s ≤ rb,g and
pblk
b,s < 1, and Λb,s = 0 otherwise. Algorithm 1 requires exactly
dlog2(Rmax/ε)e iterations.

Algorithm 1 Solving max coverage problem in (28), ∀b∈B
1: Initialize Lower bound LB=0, upper bound UB=Rmax,

tolerance ε>0,
2: for b = 1 : B do
3: while UB − LB > ε do
4: MD = LB+UB

2 ; rmax
b =MD

5: Determine Λb using (26b), (26c)
6: if E[nb(Λb)] ≤ Φ in (26d) then
7: Update LB = MD
8: else
9: Update UB = MD

10: end if
11: end while
12: end for
13: return rmax

b ,∀b ∈ B.

Once rmax
b , ∀b ∈ B, in (28) are determined, we obtain the

optimal coverage indicators Λ?b,g,∀b ∈ B,∀g ∈ G, based on
Step 5 of Algorithm 1. Then, the association matrix X is
constructed as a function of the given y according to

x?b,g = ybΛ
?
b,g, ∀b ∈ B, ∀g ∈ G. (29)

We denote the optimal X obtained in (29) as X?
y. Note that

for a fixed y, the optimized X?
y in (29) satisfies the constraints

(23b)-(23e) and minimizes the left-hand-side of (23f).

B. Minimum-Cost Subset BS Selection
The remaining task is to find the y that minimizes the object

in (23) to guarantee the UE outage constraint in (23f), which
leads to the second subproblem:

min
y

B∑
b=1

cbyb (30a)

subject to
∑
b∈B

xb,glog
(
pblk
b,g+γ

(
1− pblk

b,g

)
+ (1−γ) p̂ SINR

b,g (y,X?
y)
)
≤ log

(
ζg
)
, (30b)

yb∈{0, 1}, ∀b ∈ B.

Using (10), (11), and (14), the p̂ SINR
b,g (y,X?

y) in (30b) can be
rewritten as

p̂ SINR
b,g (y,X?

y)
(a)
= (1−pblk

b,g)I Pb,g(ybΛ
?
b,g

)

σ2+
∑
i∈B

yiÎi,g(yiΛ
?
i,g

)
<z


(b)
= (1−pblk

b,g)I ybPb,g(Λ?
b,g

)

σ2+
∑
i∈B

yiÎi,g(Λ?
i,g

)
<z


= p̃ SINR

b,g (y), (31)

where (a) is because of (29), and (b) is due to the fact that
P b,g(ybΛ

?
b,g) = 0 if yb = 0 and yiÎi,g(yiΛ?i,g) = yiÎi,g(Λ

?
i,g).

By doing so, we manipulate the UE outage constraint in (30b)
so that it only depends on y. The problem in (30) is therefore
reformulated as

min
y

B∑
b=1

cbyb (32a)

subject to
B∑
b=1

ybΛ
?
b,glog

(
pblk
b,g+γ

(
1− pblk

b,g

)
+ (1−γ) p̃ SINR

b,g (y)
)
≤ log

(
ζg
)
, (32b)

yb ∈ {0, 1},∀b ∈ B,

which is INP because of the nonlinear constraint in (32b).

We show in the following lemma that the constraint in (32b)
can be transformed to a set of linear constraints so that the
problem in (32) is converted to integer linear programming
(ILP).

Lemma 4. Suppose auxiliary variables sb,g∈B, ∀b∈B, ∀g∈
G, which is determined to satisfy the indicator function in (31)
of p̃ SINR

b,g (y):

I ybPb,g(Λ?
b,g

)

σ2+
∑
i∈B

yiÎi,g(Λ?
i,g

)
<z


= 1− sb,g. (33)

The constraint in (32b) is equivalent to the following set of
linear constraints,

sb,g ≤ ybΛ?b,g, sb,g ∈ B, (34a)

σ2+
∑
i∈B

yiÎi,g(Λ
?
b,g) ≥

ybP b,g(Λ
?
b,g)

z
− sb,gMb,g, (34b)

σ2+
∑
i∈B

yiÎi,g(Λ
?
i,g) <

ybP b,g(Λ
?
b,g)

z
+
(
1−sb,g

)
Mb,g, (34c)∑

b∈B

sb,glog
(
pblk
b,g+γ(1− pblk

b,g)
)
≤ log

(
ζg
)
, (34d)

where z is the link SINR threshold in (31) and Mb,g = 2σ2 +∑
i∈B Îi,g(Λ

?
i,g).

Proof. See Appendix D.
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TABLE II: Simulation Parameters

Variables and Description Values
BS height HBS = 10 m
UE height HUE HUE = 1.5 m
Square grid length Lgrd Lgrd = 5 m
Numbers of candidate BS locations B = 240/184/130
Numbers of grids G = 7393
Parameters for physical blockage in (4) α = 0.08, β = 0.08
Number of RF chains NRF NRF = 12
Maximum link distance Rmax Rmax = 200 m [43]
Link SINR threshold z z=1
UE outage tolerance ζg = 0.05, ∀g ∈ G
Mainlobe and sidelobe beam gain Gmain =15 dB and Gside =−9 dB [45]
BS transmit power PTx = 1 Watt [52]
Noise power σ2 σ2 = −104.5 dBm [53]
Tolerance ε in Algorithm 1 ε = 0.1

Lemma 4 allows us to transform the INP in (32) to ILP:

min
y

B∑
b=1

cbyb (35)

subject to (34a), (34b), (34c), (34d),
yb ∈ {0, 1},∀b ∈ B.

C. Overall Algorithm
We now present our overall framework for finding the

optimal solution to the minimum-cost BS deployment problem
in (23). The optimal {Λ?b,g}, ∀b ∈ B, ∀g ∈ G, are obtained
by Algorithm 1 that solves the problem in (28) (equivalently,
(26)). After attaining the optimal association matrix X?

y as a
function of the BS deployment vector y, the problem in (35)
is solved to obtain the minimum-cost BS deployment y. We
notice that the ILP in (35) is a standard integer programming,
which can be globally solved by the branch-and-bound (B&B)
method [50]. Since it is a standard procedure and there are
numerous efficient solvers (e.g., Gurobi [51]), we omit the
details here.

1) Nulling Variables for Complexity Reduction
A drawback of the linearization in (35) (respectively,

Lamma 4) is that binary auxiliary variables sb,g,∀b ∈ B, g ∈ G
are additionally introduced, which will stymie the computation
of the B&B method. Nevertheless, based on the fact that
sb,g ≤ ybΛb,g in (41) in Appendix D, one can reduce the
number of variables by setting sb,g = 0 when Λ?b,g = 0.
Moreover, in the B&B method, one can effectively reduce the
number of branches; when an element yb in y is branched
into yb = 0, values of the auxiliary variables sb,g,∀b, becomes
zero. In this way, the increased computational complexity due
to the introduced {sb,g} is reasonably reduced.

VI. SIMULATION STUDIES

In this section, we numerically evaluate the proposed BS
deployment scheme in terms of the deployment cost, computa-
tional complexity, and UE outage performance. The geometry
in Fig. 3 with dimension 390 m × 735 m is considered
to evaluate the performance of the proposed BS deployment
scheme. Different numbers of candidate BS locations (i.e.,
B = 240, B = 184, B = 130 in Fig. 3(b)) are considered
to evaluate the impact of BS candidate number B on the
network deployment cost. Specific parameters of the geometry

in Fig. 3 and the considered mmWave systems are summarized
in TABLE II. Different grid g could have different UE density
λUE,g . For ease of exposition, we divide the area into five
distinct regions as shown in Fig. 3(b) and assume that the grids
in the same region have the same UE density, where the UE
density of the ith region is described by λ(i)

UE =(2i+2)×10−4,
i = 1, . . . , 5. Based on the parameters in TABLE II, there
are on average 165 active UEs for initial access per RB.
Considering the fact that the cost cb in (23a) of installing a
BS in an area with higher UE density (e.g., urban area) is,
in general, more costly than that of lower density (e.g., rural
area), we set the installation cost cb in the ith region as 0.2i,
i = 1, . . . , 5.

A. Benchmark Algorithms

We will compare our proposed BS deployment algorithm
against the site-specific mmWave BS deployment strategies
below.

• Macro Diversity-Constrained Approach (MDCA): The
MDCA is formed by minimizing the BS deployment cost
in (23a) and by requiring each grid to be covered by at
least two BSs:

min
y

B∑
b=1

cbyb (36)

subject to
B∑
b=1

xb,g ≥ 2, ∀g ∈ G.

The constraint provides resilience to the physical block-
age. The MDCA in (36) is ILP, and thus can be efficiently
solved by using available solvers.

• Average Signal Strength-Guaranteed Approach (ASSGA)
in [34]: The underlying idea of ASSGA is to distribute
BSs to guarantee a certain level of average received
signal strength (RSS). The ASSGA is therefore formed
by adding a threshold for the RSS of each UE to the
MDCA in (36):

min
y

B∑
b=1

cbyb (37)

subject to
B∑
b=1

xb,g ≥ 2, ∀g ∈ G

1∑B
b=1 xb,g

B∑
b=1

xb,gRSSb,g ≥ RSSth,∀g ∈ G,

where RSSb,g = Pb,g +Gmain − PLb,g(rb,g) in dB is the
RSS of the link from BS b to grid g with distance rb,g , and
the RSS threshold is set to RSSth =−90 dB. The problem
in (37) is solved by using the algorithm proposed in [34].

• Blockage-Guaranteed Greedy Approach (BGGA): In this
benchmark, we focus on a strategy that provides blockage
tolerance. This is obtained by replacing the UE outage
constraint (23f) in (23) with∑
b∈B

xb,glog
(
pblk
b,g+γ

(
1− pblk

b,g

))
≤ log

(
ζg
)
, ∀g∈G. (38)
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(a) 3D campus of the University of Kansas.
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(b) Illustration of campus with different number B of candidate BS locations (i.e., B=
240 (blue circles), B=184 (blue circles+red∗), and B=130 (blue circles+red∗+green
triangle)) on the building walls and the square grids partitioning the outdoor campus.
Five regions with the different active UE densities: the UE density at the ith region is
λ

(i)
UE,g=(2i+ 2)× 10−4, i = 1, 2, . . . , 5.

Fig. 3: Campus map of the University of Kansas for outdoor mmWave BS deployment evaluation.
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Fig. 4: Minimum BS deployment cost under different γ.

Similar to the proposed algorithm, we decompose (38)
into the two separable subproblems. The BS coverage
optimization subproblem is first solved by the algorithm
in Section-V-A. To solve the minimum-cost subset BS
selection subproblem with the constraint in (38), we
adopt the greedy algorithm (GA) proposed in [35]. In
the GA, a new BS is added per iteration that guarantees
the constraint (38) while minimizing the BS deployment
cost. The iteration ends when (38) holds for all G grids.

B. Performance Evaluation

In this subsection, we present the BS deployment results
obtained by the proposed scheme and the benchmarks MDCA,
ASSGA, and BGGA. Using these results, we compare and
contrast the link SINR and UE outage performance.

1) Impact of γ on BS Deployment Cost
Different values of UE access-limited blockage tolerance

γ ∈ [0, 1] in (17) will lead to different solutions to the

problem (23). In this part of the simulation, we study the
interdependency between the γ and its corresponding objective
value

∑B
b=1 cby

?
b in Fig. 6 for γ ∈ {0.05, 0.1, 0.2}. It is noticed

that as the γ grows from 0.05 to 0.2, the objective value first
decreases and then increases. The minimum objective value∑B
b=1 cby

?
b = 46.4 is achieved when γ = 0.1. This is because,

as stated in Remark 1, a larger γ allows each BS to cover a
more number of grids. This leads to a larger macro diversity
order to each grid, but also leads to more serious UE access-
limited blockage and SINR outage. When γ grows from 0.05
to 0.1, the macro diversity benefits dominate the latter, and this
is reversed when γ further increases to 0.2. When γ ≥ 0.3,
the problem (23) becomes infeasible due to a relatively high
tolerance on UE access-limited blockage probability. Based
on the above observation, in what follows, we evaluate the
proposed algorithm (by setting γ = 0.1) with the selected
benchmarks, i.e., MDCA, ASSGA, and BGGA.

2) BS Coverage Maximization

Fig. 4 presents the maximum link distance rmax
b (meters)

values of (28) in blue at ten different candidate BS locations,
obtained by Algorithm 1. Because the Region 5 has the
highest UE density, those candidate locations have relatively
small coverage radii3 due to the increased UE access-limited
blockage. The candidate locations in the open areas of Regions
1 and 2 are LoS-visible to many grids and most of the
maximum link distances are larger than 150 meters due to
the relatively low UE density. This observation reveals that
the maximum link distance depends on both the UE density
and the nearby geometry.

3Those values are 96, 113, 126, and 200 meters in Fig. 4. Since the BS
candidate at the boundary of Region 5 is LoS-visible to a limited number of
grids, it has the maximum link distance 200 meters.
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(a) MDCA scheme, 61 deployed BSs with cost
∑B

b=1 cbyb = 32.8. (b) ASSGA scheme, 84 deployed BSs with cost
∑B

b=1 cbyb = 45.

(c) BGGA scheme, 102 deployed BSs with cost
∑B

b=1 cbyb = 55. (d) Proposed scheme, 87 deployed BSs with cost
∑B

b=1 cbyb = 46.4.

Fig. 5: BS deployment results of the benchmarks MDCA, ASSGA, BGGA, and the proposed scheme for B= 240 candidate
locations.
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Fig. 6: Maximum link distance rmax
b in (28) for 10 candidate

BS locations. The rmax
b values are best represented by the blue

fonts.

3) BS Deployment Cost
Given B = 240 candidate BS locations shown as blue

circles in Fig. 3(b), the BS deployment results of the proposed
method and the benchmark MDCA, ASSGA, and BGGA, are
displayed in Fig. 5. The numbers of the deployed BSs of the
proposed, MDCA, ASSGA, and BGGA schemes are given
by 87, 61, 84, and 102, respectively. The proposed scheme

and BGGA yield larger numbers of deployed BSs due to the
UE access-limited blockage constraint, in which a BS b has a
maximum link distance rmax

b ≤ Rmax as in Fig 4 and can only
cover a limited number of grids. Among the four strategies, the
MDCA in Fig. 5(a) deploys the least number of BSs because
the MDCA criterion merely focuses on extending the LoS link
distance to ensure the macro diversity order constraint in (36).
In contrast, ASSGA, BGGA, and the proposed scheme attempt
to evenly distribute the BSs. This is because the average RSS
constraint (37) in ASSGA, the blockage constraint (38) in
BGGA, and the UE outage constraint (23f) in the proposed
scheme control the link distance so that a UE far from
its serving BS experiences unsatisfactory link performance.
Observing the constraints in (38) and (23f), it is evident that
the BS deployment by the proposed scheme is feasible to the
BGGA. However, this is not observed from Figs 5(c) and 5(d)
because the BGGA algorithm in [35] is based on a greedy
approach.

4) SINR Performance
Given the BS deployment results in Fig. 5, we collect each

link’s SINRb,g(y?,X?) values for 50 random realizations of
UEs. The cumulative distribution functions (CDFs) of the
collected

{
SINRb,g(y?,X?)

}
of the proposed and benchmark

schemes are displayed in Fig. 7, where F (x) denotes the CDF
and x is the abscissa (i.e., SINR). For the proposed scheme,
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Fig. 7: CDF of the links’ SINR and its SINR lower bound
SINRb,g(y?,X?) in (10).

the CDF of the SINR lower bound SINRb,g(y?,X?),∀b, g in
(10) is also plotted. It is observed that the MDCA reveals
the best SINR performance due to the smallest number of
deployed BSs (lower network interference level). However,
this outpacing result is due to the ignorance of the physical
and UE access-limited blockages, resulting in the worst UE
outage performance as will be shown in Fig. 9. The proposed
scheme, deploying 87 BSs, has a slightly larger number of
the deployed BSs than the ASSGA (84 BSs) in Fig. 5, but
has better SINR performance since ASSGA does not account
for the SINR outdage during its deployment. The BGGA that
deploys the largest number of BSs (i.e., 102 BSs) shows a
worse SINR performance than that of the proposed scheme due
to the increased network interference. The SINR outage for a
connected link occurs when the SINR is lower than the thresh-
old z = 1 in TABLE II. It is noticed from Fig. 7 that 77% of
the links for the proposed scheme have the SINR lower bound
SINRb,g(y?,X?) ≥ z = 1 in (10), while 78% of the links
have the true SINR SINRb,g(y?,X?) ≥ z = 1. Since the link
with SINRb,g(y?,X?) ≥ z ensueres Pr

(
SINRb,g(y?,X?) <

z|y?,X?
)

=Pr
(
SINRb,g(y?,X?)<z|y?,X?

)
=0, this reveals

a tight SINR outage upper bound in (11).
5) Varying Number of Candidate BS Locations
In TABLE III, we present the results of the proposed BS

deployment for different numbers of candidate BS locations
as in Fig. 3(b) and for different sets of parameters. It can
be observed that increasing the number of RF chains NRF
decreases the number of deployed BSs. This is because, given
the UE access-limited blockage tolerance γ, a BS with a larger
NRF can cover more grids. Moreover, it is noticed that the
number of candidate BS locations B also impact to the BS
deployment results. When NRF = 14, ζg = 0.1 in TABLE III,
two more BSs are deployed when B = 184 compared to the
case when B = 240 due to the smaller search space for BS
deployment. As we further reduce the number of candidate BS
locations B, it raises the infeasibility issue of the proposed BS
deployment scheme as shown in TABLE III. It is also observed
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Fig. 8: Probabilities of the macro diversity orders for MDCA,
ASSGA, BGGA, and the proposed scheme.

that relaxing the UE outage tolerance substantially reduces the
number of deployed BSs (also the cost) as well as improves
the feasibility.

6) Macro Diversity Order Distribution

The macro diversity orders
∑
b∈B xb,g,∀g ∈ G in (1) of

each scheme are collected and Pr
(∑

b xb,g = i
)

are presented
in Fig. 8 for the deployment results in Fig. 5. Note that all
schemes guarantee a minimum macro diversity order 2, which
is a constraint for the MDCA and ASSGA, and an implicit
requirement for the BGGA and proposed scheme. Without
the UE access-limited blockage constraint, deployed BSs of
MDCA can cover any LoS-visible grids within Rmax and
hence, it deploys the minimum number of BSs (i.e., 61 BSs) to
produce the largest Pr

(∑
b xb,g = i

)
at i = 2, 3, 4, 5 as seen in

Fig. 8. While the proposed scheme has a similar (respectively,
smaller) number of deployed BSs to the ASSGA (than the
BGGA), its Pr

(∑
b xb,g = i

)
at i = 2, 3, 4, 5 is larger than

those of the ASSGA and BGGA, which demonstrates the
superior performance of the proposed scheme compared to
the benchmarks in terms of providing UE outage guarantees;
this will be clear in Fig. 9.

7) UE Outage Probability

Based on the BS deployment results in Fig. 5, we collect the
UE outage probabilities in (23f). The CDFs of the collected
UE outage probabilities are demonstrated in Fig. 9. It is
evident that the proposed scheme guarantees the UE outage
probability with the specified tolerance ζg = 0.05,∀g in TA-
BLE II. Even through the ASSGA deploys the similar number
of BSs as the proposed scheme, its UE outage performance is
much worse than the proposed scheme and nearly 12% UEs
have outage probability larger than 0.1. The BGGA exhibits
the similar UE outage statistics to the proposed scheme.
However, it fails to provides the guarantee and its performance
is achieved by deploying 102 BSs.
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TABLE III: Proposed BS deployment under different parameter settings.

Different B Parameter setting Number of BSs Deployment cost
B = 240 NRF =12, ζg=0.05 87 46.4
B = 240 NRF =14, ζg=0.05 86 45.6
B = 240 NRF =14, ζg=0.1 82 44.6
B = 184 NRF =12, ζg=0.05 Infeasible Not available
B = 184 NRF =14, ζg=0.05 Infeasible Not available
B = 184 NRF =14, ζg=0.1 84 45.4
B = 130 NRF =12, ζg=0.05 Infeasible Not available
B = 130 NRF =14, ζg=0.1 Infeasible Not available
B = 130 NRF =14, ζg=0.2 50 23.2
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Fig. 9: CDF of the collected UE outage probabilities.

VII. CONCLUSIONS

We proposed a link quality-guaranteed minimum-cost
mmWave BS deployment scheme that jointly optimizes the
BS placement and cell coverage. To mathematically formulate
the problem, we first introduced the stochastic mmWave link
state model and analyzed the BS association and UE outage
constraints. The BS deployment problem was then formulated
as INP, which was suboptimally solved by decomposing it
into two separable subproblems: (i) cell coverage optimization
problem and (ii) minimum subset BS selection problem. We
provided the solutions for these subproblems as well as their
theoretical justifications. Simulation results demonstrated the
efficacy of the proposed scheme in terms of the BS deployment
cost, computational complexity, UE access-limited blockage,
and UE outage performance. Compared to the benchmarks,
our proposed algorithm provides guaranteed tolerance to UE
access-limited blockage and UE outage.

It should be noted here that our main goal in this work was
to study the principle of minimum-cost BS deployment for
combined coverage and link quality constraints in mmWave
networks, and through simulations describe the gain and the
performance guarantee that can be expected by taking on such
an approach. One major drawback of the proposed scheme
was that the time complexity is exceedingly high compared

to other benchmarks. However, considering the fact that the
BS deployment planning is done off-line in practice, our
proposed scheme optimally solves the INP in (23), and the
proposed scheme provided stark outage guarantees, the high
time complexity is not a serious drawback.
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APPENDIX A
PROOF OF LEMMA 1

Rewriting the logarithmic function in (16) as log(Ψb,g) with
Ψb,g,pblk

b,g + ρb,g(xb)
(
1− pblk

b,g

)
+
(
1−ρb,g(xb)

)
p̂SINR
b,g (y,X),

log(Ψb,g) is an increasing function of Ψb,g . Hence, we only
need to show that the Ψb,g is a monotonically increasing
function of ρb,g(xb). The first-order derivative of Ψb,g with
respect to ρb,g(xb) is greater than or equal to zero, i.e.,

∂Ψb,g

∂ρb,g(xb)
=
(

1− pblk
b,g

)
− p̂SINR

b,g (y,X)
(b)

≥ 0,

where (b) follows from the definition of p̂SINR
b,g (y,X) in (13)

and the upper bound

p̂SINR
b,g (y,X)=

(
1−pblk

b,g

)
Pr
(

SINRb,g(y,X)z|y,X
)
≤ 1−pblk

b,g,

(39)
which comletes the proof.

APPENDIX B
PROOF OF LEMMA 2

The proof is equivalent to showing that the ρb,g(xb) in (7)
is a monotonically increasing function of E[nb(xb)], which
can be verified by taking the first-order derivative of ρb,g(xb)
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with respect to E[nb(xb)], yielding

∂ρb,g(xb)
∂E[nb(xb)]

=
+∞∑

i=NRF+1

E[nb(xb)]
i−1

(i−1)! e−E[nb(xb)] i−NRF
i

−
+∞∑

i=NRF+1

E[nb(xb)]
i

i! e−E[nb(xb)] i−NRF
i

(a)
= e−E[nb(xb)]

(
E[nb(xb)]

NRF

(NRF+1)! +
+∞∑

i=NRF+1

E[nb(xb)]
i

i!

(
NRF
i −

NRF
i+1

))
≥ 0,

where the step (a) follows from the fact that
+∞∑

i=NRF+1

E[nb(xb)]
i−1

(i−1)! e−E[nb(xb)] i−NRF
i in the first equality

can be rewritten as

e−E[nb(xb)]E[nb(xb)]
NRF

(NRF+1)! +
+∞∑

i=NRF+1

E[nb(xb)]
i

i! e−E[nb(xb)] i+1−NRF
i+1 .

This completes the proof.

APPENDIX C
PROOF OF LEMMA 3

We first claim that the left-hanf-side of (23f) is non-positive,
i.e.,

log
(
pblk
b,g + γ

(
1− pblk

b,g

)
+ (1−γ) p̂SINR

b,g (y,X)
)
≤ 0,

which can be checked by the bound

p̂SINR
b,g (y,X) =

(
1−pblk

b,g

)
Pr
(

SINRb,g(y,X) < z|y,X
)

(40)

≤ 1−pblk
b,g.

This reveals that if p̂SINR
b,g (y,X) in (40) (defined in (14)) is

a monotonically decreasing function of the diversity order∑
b∈B xb,g , so is the left-hand-side of (23f). Thus, in what

follows, it suffices to show the monotonicity of p̂SINR
b,g (y,X).

To this end, we divide the proof into two cases when xb,g = 1
and xb,g = 0.

First, when xb,g = 1, it can be shown from (9) and (10)
that as the macro diversity order

∑
b∈B xb,g of a UE in grid

g increases for a fixed y, the composite interference power∑
i∈B yiÎi,g(xi,g) decreases, concluding that p̂ SINR

b,g (y,X) is
a monotonically decreasing function of

∑
b∈B xb,g . On the

other hand, when xb,g = 0, the increment of macro diversity
order

∑
b∈B xb,g can lead to either xb,g = 0 (unchanged) or

xb,g = 1. In the former case, we have p̂SINR
b,g (y,X) = 1− pblk

b,g

due to (8), while in the latter case, p̂SINR
b,g (y,X) decreases,

i.e., p̂SINR
b,g (y,X) ≤ 1 − pblk

b,g . As a result, we conclude
that p̂SINR

b,g (y,X) is a monotonically decreasing function of∑
b∈B xb,g . This completes the proof.

APPENDIX D
PROOF OF LEMMA 4

It is not difficult to observe that if ybΛ?b,g = 1, the sb,g in
(33) is either sb,g = 0 or sb,g = 1, while if ybΛ?b,g = 0, then
sb,g = 0, leading to

sb,g ≤ ybΛ?b,g, sb,g ∈ {0, 1}. (41)

Because Mb,g > σ2+
∑
i∈B yiÎi,g(Λ

?
i,g), the indicator function

in (33) can be equivalently expressed as the following two
linear equations:

σ2 +
∑
i∈B

yiÎi,g(Λ
?
b,g) ≥

ybP b,g(Λ
?
b,g)

z
− sb,gMb,g (42)

and

σ2 +
∑
i∈B

yiÎi,g(Λ
?
b,g) <

ybP b,g(Λ
?
b,g)

z
+(1−sb,g)Mb,g. (43)

For the sb,g satisfying (41)-(43), the p̂ SINR
b,g in (31) can be

simplified to

p̃ SINR
b,g = (1− pblk

b,g)
(
1−sb,g

)
. (44)

Plugging (44) in the term log(pblk
b,g + γ(1 − pblk

b,g) + (1 −
γ)p̃ SINR

b,g (y)) on the left-hand-side of (32b) and incorporating
the two cases, sb,g = 0 and sb,g = 1, into it lead to

sb,glog
(
pblk
b,g+γ(1− pblk

b,g)
)
. (45)

Therefore the UE outage constraint in (32b) is succinctly∑
b∈B

ybΛ
?
b,gsb,glog

(
pblk
b,g+γ(1− pblk

b,g)
)
≤ log

(
ζg
)
, ∀g∈G,

which is still nonlinear with respect to the variables yb and
sb,g because they are coupled. However, sb,g ≤ ybΛ?b,g in (41)
implies

sb,g=ybΛ
?
b,gsb,g, (46)

which is obtained by multiplying sb,g to the both sides of (41).
The linearized UE outage constraint is then given by∑

b∈B

sb,glog
(
pblk
b,g+γ(1− pblk

b,g)
)
≤ log

(
ζg
)
, ∀g∈G. (47)

In summary, the nonlinear constraint (32b) can be replaced by
the linear constraints (41)-(43) and (47), which completes the
proof.
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